Introduction to ICL Landslide Teaching Toolbox

Kyoji SASSA, Leader of the ICL Landslide Teaching Tools Project

ICL obtained ODA (Official Development Assistance) funds to support UNESCO activities to promote Education, Science, and Culture by non-governmental organziations. The application was requested by the Director-General's office for International Affairs of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The target of this budget was Asia and the Pacific area. The ICL Strategic Plan for 2012-2021 indicates a need to develop teaching materials for use in developing countries. Therefore, ICL has compiled these landslide teaching tools including original texts made for this purpose, pdfs of already published documents, and Powerpoint[®] presentations (.ppt) for lectures. ICL called for contributions from ICL members in Asia such as Indonesia, Thailand, India, Malaysia, Iran, Vietnam, as well as Japan and New Zealand (for English review). An inaugural meeting was held at UNITWIN headquarters in Kyoto University's Uji-campus in June 2012. The concept and outline of the teaching tools gradually emerged and consolidated at a series of meeting in October (Kyoto), November (UNESCO, Paris), January and February 2013 (UNITWIN headquarters, Kyoto). Some members from developed countries (Croatia, Italy, and Chinese Taipei) also contributed tools. The first edition of these teaching tools are presented in this 480 page full-color Toolbox which includes a CD of .pdf files of guidelines, laws, published papers and Powerpoints® for lectures.

An outline of the teaching tools in the 1st edition of the Landslide Teaching Toolbox is presented below.

Copyright and Responsibility for each teaching tool.

ICL called for contributions and compiled the accepted teaching tools. Copyright and responsibility for the content of each tool lies with its contributing organization. Each tool may be updated by the contributing organization.

The Teaching Toolbox contains five parts:

- 1. Mapping and Site Prediction
- 2. Monitoring and Early warning
- 3. Testing and Numerical Simulation

- 4. Risk Management and Others
- 5. Country Practices and Case Studies

The Teaching Toolbox contains three types of tools.

- 1. The first type are TXT-tools consisting of original texts with figures.
- 2. The second type are PDF-tools consisting of already published reference papers, manuals, guidelines, laws, codes and others. They are on the accompanying CD as .pdf files.
- 3. The third type are PPT-tools consisting of Powerpoint® files made for lectures. They are on the accompanying CD as .ppt files.

This book of the TXT-tools also includes an appendix of abstracts for the PDF-tools and PPT-tools.

Identifiers used for each tool

The identifier of each tool consists of three parts:

- 1. the number of the part of the tool box in which it appears (Parts 1 to 5);
- 2. the country telephone code and an assigned unique number for each contributing organization (for example 081-1 signifies Japan-ICL headquarters, and 081-3 signifies Japan- Erosion and Sediment Control Department, Ministry of Land, Infrastructure, Transport and Tourism);
- 3. the last part of the identifier is a consecutive number assigned to the teaching tool by its contributing organization.

Example teaching tools

TXT-tool 1.886-1.1 Landslide Susceptibility Mapping

• Appears in Part 1, contributed from Chinese Taipei (886), by the National Taiwan University (1), and is their TXT-tool number 1.

PDF-tool 3.081-1.2 Manual of integrated computer simulation programme "LS-RAPID"

• Appears in Part 3, contributed from Japan (081), by ICL Headquarters and is their PDF-tool number 2

PPT-tool 4.039-1.1 Definition & Use of Empirical Rainfall Thresholds for Possible Landslide Occurrence

• Appears in Part 4, contributed from Italy (039), by the National Research

Council CNR-IRPI, and is their PPT-tool number 1

Planned updates of the Teaching Toolbox

The first edition of the Teaching Toolbox will be circulated to ICL members and ICL supporting members as well as the contributing organizations listed below. ICL will call for modifications, updates and new contributions from members. During the ICL Board of Representative meetings on 18-22 November 2013, an update of the 1st edition will be discussed. A 2nd edition of the toolbox is planned for 2014 in time for World Landslide Forum 3 on 2-6 June 2014 in Beijing, China.

List of contributing organizations with identifier number and email of leader

- 039-1 Istituto di Ricerca per al Protezione Idrogeologica, CNR, Italy Email: Fausto GUZZETTI <F.Guzzetti@irpi.cnr.it>
- 062-1 Department of Geological Engineering, Universitas Gadjah Mada,Indonesia Email: Dwikorita KARNAWATI <dwiko@ugm.ac.id>, Faisal FATHANI <tfathani@gmail.com>
- 064-1 GNS Science, New Zealand Email: Mauri McSAVENEY <m.mcsaveney@gns.cri.nz>
- 066-1 Asian Disaster Preparedness Center (ADPC), Thailand Email: NMSI ARAMBEPOLA< arambepola@adpc.net>
- 081-1 ICL Headquarters, Japan Email: Kyoji SASSA< <u>sassa@iclhq.org</u>>
- 081-2 Tohoku Gakuin University, Japan Email : Toyohiko MIYAGI< <u>miyagi@izcc.tohoku-gakuin.ac.jp</u>>
- 081-3 Erosion and Sediment Control Department, Ministry of Land, Infrastructure, Transport and Tourism (MLIT), Japan
- 084-1 VNU University of Science, Vietnam Email: DUC Do Minh <ducgeo@gmail.com>
- 385-1 Croatian Landslide Group from Faculty of Civil Engineering, Rijeka University and Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb Email: Željko ARBANAS1zeljko.arbanas@gradri.hr
 Sniožena MULALIĆ ARBANAS2ceniezena mihalia@nen hr

Snježana MIHALIĆ ARBANAS<snjezana.mihalic@rgn.hr>

886-1 National Taiwan University, Department of Civil Engineering, Chinese Taipei Email: Ko-Fei Liu <kfliu@ntu.edu.tw>

Content of Book

Preface: Aim and background of teaching tool

Content

TXT-tool 4.886-1.2

Introduction: Development of teaching tool and planned use

Part 1. Mapping and Site Prediction

TXT-tool 1.081-2.1	Landslide topography mapping through aerial photo interpretation	1
TXT-tool 1.081-2.2	Interpreting topography from a historical perspective - A case study of a tropical deeply weathered region	11
TXT-tool 1.081-2.3	Abstracting unstable slopes (landslide topography) using aerial photos and topographic maps: Concept and frameworks	22
TXT-tool 1.081-2.4	Risk Evaluation using the Analytic Hierarchy Process (AHP) – Introduction to the process concept	36
TXT-tool 1.886-1.1	Landslide Susceptibility Map	50
TXT-tool 1.886-1.2	Potential debris flow torrent investigation methods	56
Part 2. Monitoring a	and Early Warning	
TXT-tool 2.062-1.1	A Landslide Monitoring and Early Warning System	69
TXT-tool 2.062-1.2	A Monitoring and Early Warning System for Debris Flows in Rivers on Volcanoes	80
TXT-tool 2.081-1.1	Key Points in Field Work for Landslide Engineers	89
TXT-tool 2.385-1.1	Landslide Comprehensive Monitoring System: The Grohovo Landslide Case Study, Croatia	146
TXT-tool 2.385-1.2	A Comprehensive Landslide Monitoring System: The Kostanjek Landslide, Croatia	158
TXT-tool 2.886-1.1	Guidelines for Landslide Monitoring Systems	169
TXT-tool 2.886-1.2	Debris Flow Monitoring Guidelines	183
TXT-tool 2.886-1.3	Early warning criteria for debris flows and their application in Taiwan	194
Part 3. Testing and	Numerical Simulation	
TXT-tool 3.081-1.1	Landslide Initiation Mechanism	205
TXT-tool 3.081-1.2	Landslide Dynamics	215
TXT-tool 3.886-1.1	Introduction to Debris-2D – A Debris Flow Simulation Program	238
Part 4. Risk Manage	ement and Others	
TXT-tool 4.062-1.1 TXT-tool 4.062-1.2	A Socio-Technical Approach for Landslide Mitigation and Risk Reduction Community Hazard Maps for Landslide Risk Reduction	249 259
TXT-tool 4.066-1.1	Community-based Landslide Risk Management Approaches	267
TXT tool 4.084-1.1	Soil Slope Stability Analysis	281
TXT-tool 4.886-1.1	Taiwan Typhoon Loss Assessment System (TLAS Taiwan) Web Tool	298

Emergency Post-landslide Disaster Documentation.....

304

TXT-tool 5.886-1.1	Procedures for Constructing Disaster Evacuation Maps: Guidelines and	
	Standards	332
TXT-tool 5.886-1.2	Ecological Countermeasure Guidelines and Case Histories in Taiwan	337

Appendix: Abstracts of PDF and PPT tools

Part 1. Mapping and Site Prediction

PDF-tool 1.064-1.1	Field guide for the identification and assessment of Landslide and Erosion features and hazards affecting pipelines (88 pages)	349
PPT-tool 1.039-1.1	Remote Sensing data and methodology for event landslide recognition and mapping (30 pages)	350
PPT-tool 1.064-1.1	Landslides in New Zealand – identifying the hazard (50 pages)	351
PPT-tool 1.064-1.2	Earthquake-Induced landslides in New Zealand (40 pages)	352
PPT-tool 1.064-1.3	Probabilistic landslide hazard, North Island, New Zealand (54 pages)	353
PPT-tool 1.886-1.1	Construct a Landslide Susceptibility Map (54 pages)	354
PPT-tool 1.886-1.2	Potential debris flow torrent investigation method (41 pages)	355
	Part 2. Monitoring and Early Warning	
PDF-tool 2.091-1.1	Status of Landslide Monitoring in India (10 pages)	356
PPT-tool 2.039-1.1	Italian National Landslide Warning System (29 pages)	358
PPT-tool 2.062-1.1	Landslide Monitoring and Early Warning System (31 pages)	359
PPT-tool 2.062-1.2	Monitoring and Early Warning System for Debris Flows in Rivers on Volcanoes (37 pages)	360
PPT-tool 2.886-1.1	Landslide Monitoring System Guidelines (39 pages)	361
	Part 3. Testing and Numerical Simulation	
PDF-tool 3.081-1.1	Manual for ICL-1 - a Transportable Ring Shear Apparatus (46 pages)	362
PDF-tool 3.081-1.2	Manual for the LS-RAPID software (43 pages)	363
PDF-tool 3.081-1.3	Undrained dynamic- loading ring shear apparatus and its application to landslide dynamics (13 pages)	364
PDF-tool 3.081-1.4	Dynamic properties of earthquake induced large-scale rapid landslides within past landslide masses (10 pages)	365
PDF-tool 3.081-1.5	An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide (18 pages)	366
PDF-tool 3.081-1.6	A hypothesis of the Senoumi submarine megaslide in Suruga Bay in Japan - based on the undrained dynamic-loading ring shear tests and computer simulation (17 pages)	367
PPT-tool 3.039-1.1	Landslide Hazards and Risk Assessment (52 pages)	368
PPT-tool 3.039-1.2	Probabilistic approach to physically based landslide modeling (29 pages)	369
PPT-tool 3.039-1.3	Landslide-related WPS services (46 pages)	370
PPT-tool 3.039-1.4	Advanced 2D Slope stability Analysis by LEM by SSAP software: a full freeware tool for teaching and scientific community (52 pages)	371
PPT-tool 3.064-1.1	Numerical analysis of slopes (53 pages)	372
PPT-tool 3.886-1.1	Debris-2D Tutorial (43 pages)	373

Part 4. Risk Management and Others

PDF-tool 4.091-1.1	Guidelines for Landslides Management in India (190 pages)	374
PDF-tool 4.091-1.2	Training Module on Comprehensive Landslide Risk Management (304 pages).	375
PDF-tool 4.091-1.3	Community-based Landslide Risk Reduction (24 pages)	376
PPT-tool 4.039-1.1	Definition and Use of Empirical Rainfall Thresholds for Possible Landslide Occurrence (39 pages)	377
PPT-tool 4.039-1.2	Landslide Risk to the Population of Italy (37 pages)	378
PPT-tool 4.062-1.1	Socio-Technical Approach for Landslide Mitigation and Risk Reduction (10 pages)	379
PPT-tool 4.062-1.2	Community Hazard Maps for Landslide Risk Reduction (10 pages)	380
PPT-tool 4.064-1.1	Case History: The 1979 Abbotsford Landslide, Dunedin, New Zealand (37 pages)	381
PPT-tool 4.064-1.2	Qualitative landslide risk assessment in New Zealand (30 pages)	382
PPT-tool 4.064-1.3	Quantitative landslide risk assessment in New Zealand (30 pages)	383
PPT-tool 4.064-1.4	Three Recent GNS Science Landslide Responses (28 pages)	384
PPT-tool 4.064-1.5	Case study – Utiku Landslide, central North Island, New Zealand (27 pages)	385
PPT-tool 4.064-1.6	What are Landslides in New Zealand? (36 pages)	386
PPT-tool 4.064-1.7	Quantifying the benefits for floodplain management of targeted reforestation of landslide-prone terrain in New Zealand (23 pages)	387
PPT-tool 4.066-1.1	Course on Landslide Disaster Risk Reduction for Local Government Level Stakeholders (416 pages)	388
PPT-tool 4.886-1.1	Typhoon Loss Assessment System (TLAS) Taiwan Web Tool (8 pages)	391
PPT-tool 4.886-1.2	Assessment Social Impact of debris flow disaster by Social Vulnerability Index (17 pages)	392
	Part 5. Country Practices and Case Studies	
PDF-tool 5.001-1.1	The Landslide Handbook: A Guide To Understanding Landslides (60 pages)	393
PDF-tool 5.064-1.1	Guidelines for assessing planning policy and consent requirements for landslide prone land (78 pages)	394
PDF-tool 5.064-1.2	Shut happens - Building hazard resilience for businesses in NZ (9 pages)	395
PDF-tool 5.064-1.3	Working from the same page consistent messages for CDEM: PART B: Hazard-specific information – Landslides (14 pages)	396
PDF-tool 5.081-3.1	Japanese Laws, Codes, Guideline and Standard Procedure in regarding to disaster Prevention and Risk reduction in Japan (874 pages)	397
PPT-tool 5.886-1.1	Tutorial: Procedures for Constructing Disaster Evacuation Maps (56 pages)	399

Member of ICL 40	01	
------------------	----	--